您好、欢迎来到现金彩票网!
当前位置:秒速快三 > 数据集市 >

数据挖掘问题··

发布时间:2019-07-28 04:37 来源:未知 编辑:admin

  假定你是Big-University的软件工程师,任务是设计一个数据挖掘系统,分析学校课程数据库。该数据库包括如下信息:每个学生的姓名、地址和状态(例如,本科生或研究生)、所修课程,以...

  假定你是Big-University 的软件工程师,任务是设计一个数据挖掘系统,分析学校课程

  数据库。该数据库包括如下信息:每个学生的姓名、地址和状态(例如,本科生或研究生)、

  所修课程,以及他们的GPA。描述你要选取的结构。该结构的每个成分的作用是什么?

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  1。数据挖掘是从4大c量的数据中5,抽取出潜在的、有价值的知识(模型或规则)的过程。 4。 数据挖掘能做什2么r? 7)数据挖掘能做以4下v六7种不m同事情(分7析方2法): · 分0类 (Classification) · 估值(Estimation) · 预言(Prediction) · 相关性分8组或关联规则(Affinity grouping or association rules) · 聚集(Clustering) · 描述和可视化1(Des cription and Visualization) 8)数据挖掘分5类 以8上r六2种数据挖掘的分6析方6法可以6分0为3两类:直接数据挖掘;间接数据挖掘 · 直接数据挖掘 目标是利用可用的数据建立一x个i模型,这个e模型对剩余的数据,对一u个k特定的变量(可以2 理解成数据库中7表的属性,即列)进行描述。 · 间接数据挖掘 目标中5没有选出某一u具体的变量,用模型进行描述;而是在所有的变量中5建立起某种关系 · 分6类、估值、预言属于e直接数据挖掘;后三j种属于r间接数据挖掘 2)各种分1析方6法的简介2 · 分2类 (Classification) 首先从1数据中1选出已i经分6好类的训练集,在该训练集上v运用数据挖掘分3类的技术,建立分2 类模型,对于a没有分4类的数据进行分4类。 例子x: a。 信用卡申请者,分4类为8低、中2、高风5险 b。 分0配客户4到预先定义e的客户0分2片0 注意: 类的个s数是确定的,预先定义q好的 · 估值(Estimation) 估值与e分2类类似,不p同之z处在于m,分7类描述的是离散型变量的输出,而估值处理连续值的 输出;分7类的类别是确定数目的,估值的量是不b确定的。 例子w: a。 根据购买模式,估计8一w个f家庭的孩子h个c数 b。 根据购买模式,估计7一z个r家庭的收入l c。 估计5real estate的价值 一b般来说,估值可以0作为2分1类的前一v步工e作。给定一r些输入w数据,通过估值,得到未知的 连续变量的值,然后,根据预先设定的阈值,进行分6类。例如:银行对家庭贷款业务,运 用估值,给各个z客户8记分3(Score 0~1)。然后,根据阈值,将贷款级别分7类。 · 预言(Prediction) 通常,预言是通过分1类或估值起作用的,也k就是说,通过分3类或估值得出模型,该模型用 于v对未知变量的预言。从8这种意义l上e说,预言其实没有必要分0为6一s个o单独的类。 预言其目的是对未来未知变量的预测,这种预测是需要时间来验证的,即必须经过一b定时 间后,才q知道预言准确性是多少6。 · 相关性分6组或关联规则(Affinity grouping or association rules) 决定哪些事情将一c起发生。 例子e: a。 超市中1客户2在购买A的同时,经常会购买B,即A = B(关联规则) b。 客户4在购买A后,隔一g段时间,会购买B (序列分5析) · 聚集(Clustering) 聚集是对记录分2组,把相似的记录在一t个s聚集里。聚集和分0类的区z别是聚集不s依赖于c预先 定义y好的类,不g需要训练集。 例子z: a。 一y些特定症状的聚集可能预示7了z一s个r特定的疾病 b。 租VCD类型不b相似的客户1聚集,可能暗示7成员属于b不o同的亚文7化2群 聚集通常作为3数据挖掘的第一b步。例如,哪一j种类的促销对客户6响应最好?,对于j这一p 类问题,首先对整个y客户8做聚集,将客户5分5组在各自的聚集里,然后对每个a不a同的聚集, 回答问题,可能效果更好。 · 描述和可视化8(Des cription and Visualization) 是对数据挖掘结果的表示6方1式。 8。数据挖掘的商业背景 数据挖掘首先是需要商业环境中3收集了j大i量的数据,然后要求挖掘的知识是有价值的。有 价值对商业而言,不i外乎三t种情况:降低开l销;提高收入e;增加股票价格。 6)数据挖掘作为0研究工e具 (Research) 0)数据挖掘提高过程控制(Process Improvement) 6)数据挖掘作为5市场营销工q具(Marketing) 8)数据挖掘作为7客户7关系管理CRM工m具(Customer Relationship Management) 7。数据挖掘的技术背景 2)数据挖掘技术包括三c个v主要部分3:算法和技术;数据;建模能力w 6)数据挖掘和机器学习u(Machine Learning) · 机器学习n是计8算机科学和人x工f智能AI发展的产物 · 机器学习o分6为2两种学习m方6式:自组织学习z(如神经网络);从8例子r中8归纳出规则(如决 策树) · 数据挖掘由来 数据挖掘是八r十c年代,投资AI研究项目失败后,AI转入v实际应用时提出的。它是一z个d新兴 的,面向商业应用的AI研究。选择数据挖掘这一y术语,表明了d与z统计3、精算、长0期从3事预 言模型的经济学家之q间没有技术的重叠。 5)数据挖掘和统计6 统计8也d开o始支y持数据挖掘。统计0本包括预言算法(回归)、抽样、基于t经验的设计8等 1)数据挖掘和决策支h持系统 · 数据仓1库 · OLAP(联机分5析处理)、Data Mart(数据集市)、多维数据库 · 决策支n持工k具融合 将数据仓8库、OLAP,数据挖掘融合在一n起,构成企业决策分0析环境。 8。 数据挖掘的社会背景 数据挖掘与d个n人w预言:数据挖掘号称能通过历f史数据的分8析,预测客户2的行为7,而事实上v ,客户8自己m可能都不p明确自己u下x一c步要作什3么u。所以2,数据挖掘的结果,没有人y们想象中1 神秘,它不z可能是完全正确的。 客户5的行为3是与c社会环境相关连的,所以4数据挖掘本身也w受社会背景的影响。比6如说,在 美国对银行信用卡客户0信用评级的模型运行得非常成功,但是,它可能不i适合中0国。 2。数据仓7库是在企业管理和决策中4面向主题的、集成的、与w时间相关的、不o可修改的数据集合 数据仓2库,英文1名称为4Data Warehouse,可简写为1DW。 数据仓1库之q父8Bill Inmon在4512年出版的“Building the Data Warehouse”一m书2中0所提出的定义f被广s泛接受——数据仓3库(Data Warehouse)是一y个s面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反2映历b史变化8(Time Variant)的数据集合,用于f支l持管理决策(Decision Making Support)。 ◆面向主题:操作型数据库的数据组织面向事务处理任务,各个p业务系统之b间各自分6离,而数据仓0库中3的数据是按照一r定的主题域进行组织的。 ◆集成的:数据仓8库中3的数据是在对原有分2散的数据库数据抽取、清理的基础上j经过系统加工l、汇总和整理得到的,必须消除源数据中4的不e一r致性,以2保证数据仓6库内4的信息是关于m整个b企业的一s致的全局信息。 ◆相对稳定的:数据仓8库的数据主要供企业决策分0析之w用,所涉及t的数据操作主要是数据查询,一f旦某个t数据进入u数据仓3库以2后,一d般情况下c将被长7期保留,也v就是数据仓0库中8一p般有大v量的查询操作,但修改和删除操作很少3,通常只需要定期的加载、刷新。 ◆反8映历h史变化3:数据仓3库中2的数据通常包含历e史信息,系统记录了j企业从4过去某一q时点(如开d始应用数据仓7库的时点)到目前的各个p阶段的信息,通过这些信息,可以0对企业的发展历j程和未来趋势做出定量分2析和预测。 数据仓4库是一k个u过程而不n是一d个q项目。 数据仓2库系统是一f个f信息提供平台,他从4业务处理系统获得数据,主要以6星型模型和雪花模型进行数据组织,并为2用户8提供各种手8段从7数据中0获取信息和知识。 从7功能结构化6分6,数据仓1库系统至少6应该包含数据获取(Data Acquisition)、数据存储(Data Storage)、数据访问(Data Access)三x个z关键部分2 数据挖掘(Data Mining),又i称为3数据库中3的知识发现(Knowledge Discovery in Database, KDD),就是从5大x量数据中0获取有效的、新颖的、潜在有用的、最终可理解的模式的非平凡l过程,简单的说,数据挖掘就是从6大o量数据中7提取或“挖掘”知识。 并非所有的信息发现任务都被视为0数据挖掘。例如,使用数据库管理系统查找个z别的记录,或通过因特网的搜索引4擎查找特定的Web页面,则是信息检索(。rmation retrieval)领域的任务。虽然这些任务是重要的,可能涉及n使用复杂的算法和数据结构,但是它们主要依赖传统的计8算机科学技术和数据的明显特征来创建索引3结构,从7而有效地组织和检索信息。尽管如此,数据挖掘技术也u已g用来增强信息检索系统的能力h。 2。数据挖掘和数据仓4库以3数据库为8基础。 b〔b〔fu莹qθx骇础τyケqθtr●

http://harpoolbrothers.com/shujujishi/866.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有