您好、欢迎来到现金彩票网!
当前位置:秒速快三 > 数据寄存器 >

如何将PIC单片机的数据存储器RAM当作寄存器来使用

发布时间:2019-07-21 17:15 来源:未知 编辑:admin

  来使用以使寻址简单明洁,它们功能上可分为操作寄存器、I/O寄存器、通用寄存器和特殊功用寄存器。它们的组织结构如图1.4所示:这些寄存器用代号F0~F79来表示。F0~F4是操作寄存器,F5-F7是I /O寄存器,其余为通用寄存器。特殊功用寄存器地址对用户不透明。

  此寄存器是一个8位计数器。和其他寄存器一样可由程序进行读写操作。它用于对外加在RTCC引脚上的脉冲计数,或对内部时钟计数(起定时器作用)。

  上图中可看出RTCC工作状态由OPTION寄存器控制(参见§1.5.4),其中OPTION寄存器的RTS位用来选择RTCC的计数信号源,当RTS为“1”时,信号源为内部时钟,RTS为“0”时,信号源为来自RTCC引脚的外部信号。OPTION寄存器的PSA位控制预分频器(Prescaler)分配对象,当PSA位为“1”,8位可编程预分配给RTCC,即外部或内部信号经过预分频器分频后再输出给RTCC。预分频器的分频比率由OPTION内的PS0~PS2决定。这时涉及写f1(RTCC)寄存器的指令均同时将预分频器清零。但要注意OPTION寄存器内容仍保持不变,即分配对象、分频比率等均不变。OPTION的RTE位用于选择外部计数脉冲触发沿。当RTE为“1”时为下降沿触发,为“0”时为上升沿触发。

  RTCC计数器采用递增方式计数,当计数至FFH时,在下一个计数发生后,将自动复零,重新开始计数,以此一直循环下去。RTCC对其输入脉冲信号的响应延迟时间为2个机器周期,不论输入脉冲是内部时钟、外部信号或是预分频器的输出。响应时序见图1.6。

  RTCC对外部信号的采样周期为2个振荡周期。因此当不用预分频器时,外加在RTCC引脚上的脉冲宽度不得小于2个振荡周期,即1/2指令周期。同理,当使用预分频器时,预分频器的输出脉冲周期不得小于指令周期,因此预分频器最大输入频率可达N.fosc/4,N为预分频器的分频比,但不得大于50MHz。

  当RTCC使用内部时钟信号时,如果没有预分频器,则RTCC值随指令节拍增1。 当一个值写入RTCC时,接下来的二个指令节拍RTCC的值不会改变,从第三个指令节拍才开始递增,见下图。

  应注意的是尽管PIC对外部加于RTCC信号端上的信号宽度没有很严格的要求,但是如果高电平或低电平的维持时间太短,也有可能使RTCC检测不到这个信号。一般要求信号宽度要大于是10nS。

  程序计数器PC可寻址最多2K的程序存储器。表1.3列出了PIC16C5X各种型号的PC长度和堆栈的长度。

  单片机一复位(RESET),F2的值全置为“1”。除非执行地址跳转指令,否则当执行一条指令后,F2(PC)值会动加1指向下一条指令。

  a、“GOTO”指令。它可以直接写(改变)PC的低9位。对于PIC16C56/57/58,状态寄存器F3的PA1、PAO两位将置入PC的最高二位。所示“GOTO”指令可以跳转到程序存储器的任何地方。

  b、“CALL”指令。它可以直接写PC 低8位,同时将PC的第9位清零。对于PIC16C56/57/58,状态寄存器F3的PA1、PAO两位将置入PC的最高二位(第10、11位)。

  e、“ADDWF F2”指令。它把PC值加1后再和W寄存器的值相加,结果写入PC。

  在以上b、d和e中,PC的第9位总是被清为零。所以用这三条指令来产生程序跳转时,要把子程序或分支程序放在每页的上部地址(分别为000-0FF、200-2FF、400-4FF、600-6FF)。

  如图1.7所示F3包含了ALU的算术状态、RESET状态、程序存储器页面地址等。F3中除PD和TO两位外,其他的位都可由指令来设置或清零。注意,当你执行一条欲改变F3 寄存器的指令后,F3中的情况可能出乎你的意料。

  你得到的结果是F3=000UU100(U为未变)而不是想像中的全零。UU两位是PD和TO,它们维持不变,而2位由于清零操作被置成“1”。所以如果你要想改变F3的内容,建议你使用BCF、BSF和MOVWF这三条指令,因为它们的执行不影响其他状态位。

  在加法运算(ADDWF)时,C是进位位。在减法运算(SUBWF)时,C是借位的反(Borrow)。

  PD和TO两位可用来判断RESET的原因。例如判断RESET是由芯片上电引起的,或是由看门狗WDT计时溢出引起的,或是复位端加低电平引起的,或是由WDT唤醒SLEEP引起的。

  表1.4列出了影响TO、PD位的事件。表1.5列出了在各种RESET后的TO、PD位状态。

  判断RESET从何处引起有时是很必要的。例如在对系统初始化时,经常需判断这次复位是否是上电引起的。如果不是上电复位,则不再进行初始化。

  页面选择位PA1、PA0的作用前面已描述过,RESET时清PA0-PA2位为零,所以复位后程序区页面自动选择在0页。

  F4的0-4位在间接寻址中用来选择32个数据寄存器。5-7位为只读位,并恒为1。请参考F0寄存器描述。

  FSR《6:5》位用来选择当前数据寄存器体(Bank)。PIC16C57有80个数据寄存器,如图1.4所示。80个寄存器分为4个体(Bank0~Bank3),每个体的低16个寄存器的物理位置是相同的(参考§1.5.3通用寄存器的描述)。当FSR的第4位为“1”时,则要根据FSR《6:5》位来选择某个寄存器体中的某一个高16的寄存器。

  注意:当芯片上电复位时,FSR《6:5》是不定的,所以它可能指向任何一个Bank。而其他复位则保持原来的值不变。

  PIC16C52/54/56/58有二个I/O口RA、RB(F5、F6),PIC16C55/57有三个I/O口RA、RB、RC(F5、F6、F7)。与其它寄存器一样,它们皆可由指令来读写。它们是可编程双向I/O口,可由程序来编程确定每一根I/O端的输入/输出状态。控制方法见§1.8节。

  RESET后所有的I/O口都置成输入态(等于高阻态),即I/O控制寄存器(TRISA、TRISB、TRISC)都被置成“1”。

  请参考图1.4。对寄存器体Bank的寻址请参阅F4寄存器描述和第四章的实例。

  W用来存放两操作数指令中的第二个操作数,或用以进行内部数据传送。算术逻辑单元ALU把W和寄存器连接起来,ALU的运算结果通过总据总线、I/O控制寄存器(TRISA、TRISB、TRISC)

  TRISA、TRISB、TRISC分别对应I/O口A、B、C。其中TRISA只有4位,和A口对应。执行“TRIS f”指令可把W的值置入I/O控制寄存器,以此来定义各I/O端的输入/输出态。当写入“1”时,将相应的I/O端置成输入态(高阻态),当写入“0”,则将相应的I/O端置成输出态。I/O控制寄存器都是只写寄存器,在RESET后自动置为全“1”,即所有I/O口都为输入态。

  b、分配预分频器(Prescaler)给RTCC或WDT。注意预分频器只能分配给RTCC或WDT其中之一使用,不能同时分配。

  当预分频器分配给RTCC后,所有写RTCC寄存器的指令如CLRF 1、MOVWF 1等都会清除预分频器。同理,分配给WDT时,诸如CLRWDT和SLEEP指令将清除预分频器里已有的值使其归零。

  SMV512K32是一款高性能异步CMOS SRAM,由32位524,288个字组成。可在两种模式:主控或受控间进行引脚选择。主设件为用户提供了定义的自主EDAC擦除选项。从器件选择采用按要求擦除特性,此特性可由一个主器件启动。根据用户需要,可提供3个读周期和4个写周期(描述如下)。 特性 20ns读取,13.8ns写入(最大存取时间) 与商用 512K x 32 SRAM器件功能兼容 内置EDAC(错误侦测和校正)以减轻软错误 用于自主校正的内置引擎 CMOS兼容输入和输出电平,3态双向数据总线V内核 辐射性能放射耐受性是一个基于最初器件标准的典型值。辐射数据和批量验收测试可用 - 细节请与厂家联系。 设计使用基底工程和抗辐射(HBD)与硅空间技术公司(SST)许可协议下的

  TM 技术和存储器设计。 TID抗扰度> 3e5rad(Si) SER< 5e-17翻转/位 - 天使用(CRPLE96来计算用于与地同步轨道,太阳安静期的SER。 LET = 110 MeV (T = 398K) 采用76引线陶瓷方形扁平封装 可提供工程评估(/EM)样品这些部件只用于工程评估。它们的加工工艺为非兼容流程(例如,无预烧过程等),...

  这个20位总线 VVCC操作。 SN74ALVCH16821可用作两个10位触发器或一个20位触发器。 20个触发器是边沿触发的D型触发器。在时钟(CLK)输入的正跳变时,器件在Q输出端提供真实数据。 缓冲输出使能(OE)输入可用于将10个输出放入正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 数据输入端的总线保持消除了对外部上拉/下拉电阻的需求 每个JESD的闩锁性能超过250 mA 17 ESD保护超过JESD 22 ...

  ALVTH16373器件是16位透明D型锁存器,具有3态输出,设计用于2.5 V或3.3 VVCC

  操作,但能够为5 V系统环境提供TTL接口。这些器件特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入端设置的电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动器提供了在没有接口或上拉组件的情况下驱动总线线路的能力。 OE \不会影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 当VCC介于0和1.2 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保1.2 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ALVTH1637...

  LVTH162374器件是16位边沿触发D型触发器,具有3态输出,专为低压(3.3V)设计VCC操作,但能够为5 V系统环境提供TTL接口。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位触发器。在时钟(CLK)的正跳变时,触发器的Q输出采用在D输入端设置的逻辑电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE不影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 输出设计为源或吸收高达12 mA,包括等效的22- 用于减少过冲和下冲的串联电阻。 有源总线保持电路保持未使用或未驱动输入处于有效的逻辑状态。建议不要使用上拉或下拉电阻与总线保持电路。 当VCC介于0和1.5 V之间时,器件处于高阻态上电或断电。但是,为了确保1.5 V以上的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸...

  ) 数据输入上的总线保持消除了对外部上拉或下拉电阻的需求 闩锁性能超过250 mA 每JESD 17ESD保护超过JESD 22 2000-V人体模型(A114-A) 1000 V充电设备模型(C101) 参数 与其它产品相比D 类触发器 ...

  这个20位触发器专为1.65 V至3.6 VVCC操作而设计。 SN74ALVCH16721的20个触发器是边沿触发的D型触发器,具有合格的时钟存储器。在时钟(CLK)输入的正跳变时,如果时钟使能(CLKEN)输入为低电平,器件在Q输出端提供真实数据。如果CLKEN \为高电平,则不存储数据。 缓冲输出使能(OE)\输入将20个输出置于正常逻辑状态(高或低)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。

  SN74ALVCH16721的工作温度范围为?? 40C至85C。 特性 Widebus,EPIC是德州仪器公司的商标。 德州仪器广播公司的成员?家庭 EPIC ?? (增强型高性能...

  这个16位边沿触发D型触发器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH162374特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。它可以用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出采用在数据(D)输入端设置的逻辑电平。 输出使能(OE)输入可用于将八个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 输出设计为吸收高达12 mA的电流,包括等效的26- 电阻可减少过冲和下冲。 确保上电或上电时的高阻态向下,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 数据输入端的总线保持...

  这个12位至24位多路复用D型锁存器设计用于1.65 V至3.6 V CC 操作。 SN74ALVCH162260用于必须将两个独立数据路径复用到单个数据路径或从单个数据路径解复用的应用中。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。该器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线B \控制信号还允许在A到B方向上进行存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存状态,直到锁存使能输入返回高电平为止。 B输出,设计用于吸收高达12 mA的电流,包括等效的26- 电阻,以减少过冲和下冲。 确保上电或掉电期间的高阻态,OE \应通过上拉电阻连接到V CC ;电阻的最小值由驱动器的电流吸收能力决定。 提供...

  这个20位总线接口D型锁存器设计用于1.65 V至3.6 VVCC操作。

  SN74ALVCH16841具有三态输出,专为驱动高电容或相对低阻抗负载而设计。该器件特别适用于实现缓冲寄存器,单向总线驱动器和工作寄存器。 SN74ALVCH16841可用作两个10位锁存器或一个20位锁存器。 20个锁存器是透明的D型锁存器。该器件具有同相数据(D)输入,并在其输出端提供线LE)输入为高电平时,相应的10位锁存器的Q输出跟随D输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(10E或2OE)输入可用于放置输出。相应的10位锁存器处于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。 OE \不会影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。

  LVTH16373器件是16位透明D型锁存器,具有3态输出,设计用于低压(3.3V)VCC操作,但能够为5 V系统环境提供TTL接口。这些器件特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动器提供了在没有接口或上拉组件的情况下驱动总线线路的能力。 OE不影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。建议不要使用上拉或下拉电阻与总线保持电路。 当VCC介于0和1.5 V之间时,器件处于高阻态上电或断电。但是,为了确保1.5 V以上的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 这些器件完全...

  这个18位总线 VVCC操作。 SN74ALVCH16823具有三态输出,专为驱动高电容或相对低阻抗负载而设计。该器件特别适用于实现更宽的缓冲寄存器,I /O端口,带奇偶校验的双向总线驱动器和工作寄存器。 SN74ALVCH16823可用作两个9位触发器或一个18-位触发器。当时钟使能(CLKEN)输入为低电平时,D型触发器在时钟的低到高转换时输入数据。将CLKEN置为高电平会禁用时钟缓冲区,从而锁存输出。将清除(

  CLR)输入设为低电平会使Q输出变为低电平而与时钟无关。 缓冲输出使能(

  OE )输入可用于将九个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 输出使能(OE)输入不影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定...

  ABT16373A是16位透明D型锁存器,具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入端设置的电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ABT16373A的特点是可在-55C至125C的整个军用温度范围内工作。 SN74ABT16373A的特点是在-40C至85C的温度范围内工作。 ...

  SN74ALVCH16820的触发器是边沿触发的D型触发器。在时钟(CLK)输入的正跳变时,器件在Q输出端提供真实数据。 缓冲输出使能(OE)输入可用于将10个输出放入正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \输入不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于将未使用或未驱动的输入保持在有效的逻辑电平。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 数据输入端的总线保持消除了对外部上拉/下拉电阻的需求 每个JESD的闩锁性能超过250 mA 17 ESD保护超过JESD 22 2000-V人体模型(...

  ABT16374A是16位边沿触发D型触发器,具有3态输出,专为驱动高电容或相对低阻抗而设计负载。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出采用在数据(D)输入处设置的逻辑电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ABT16374A的特点是可在-55C至125C的整个军用温度范围内工作。 SN74ABT16374A的特点是在-40C至85C的温度范围内工作。 特性 ...

  AHCT16374器件是16位边沿触发D型触发器,具有3态输出,专为驱动高电容或相对较低的电容而设计阻抗负载。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出取数据(D)输入的逻辑电平。 缓冲输出使能(OE \)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 为了确保上电或断电期间的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 SN54AHCT16374的特点是可在-55C至125C的整个军用温度范围内工作。 SN74AHCT16374的工作温度范围为-40C至85C。 特性 德州仪器WidebusTM家庭成员 EPICTM(...

  CY74FCT16374T和CY74FCT162374T是16位D型寄存器,设计用作高速,低功耗总线应用中的缓冲寄存器。通过连接输出使能(OE)和时钟(CLK)输入,这些器件可用作两个独立的8位寄存器或单个16位寄存器。流通式引脚排列和小型收缩包装有助于简化电路板布局。 使用Ioff为部分断电应用完全指定此设备。 Ioff电路禁用输出,防止在断电时损坏通过器件的电流回流。 CY74FCT16374T非常适合驱动高电容负载和低阻抗背板。 CY74FCT162374T具有24 mA平衡输出驱动器,输出端带有限流电阻。这减少了对外部终端电阻的需求,并提供最小的下冲和减少的接地反弹。 CY74FCT162374T非常适合驱动传输线。 特性 Ioff支持部分省电模式操作 边沿速率控制电路用于显着改善的噪声特性 典型的输出偏斜

  250 ps esd> 2000v tssop(19.6密耳间距)和ssop(25密耳间距)封装 工业温度范围-40c至+ 85c vcc= 5v10% cy74fct16374t特点: ...

  这个12位至24位多路复用D型锁存器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16260用于必须将两个独立数据路径复用到单个数据路径或从单个数据路径解复用的应用中。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。该器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线B \控制信号还允许在A到B方向上进行存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存,直到锁存使能输入返回高电平为止。 确保上电或断电期间的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。

  这个16位边沿触发D型触发器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16374特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。它可以用作两个8位触发器或一个16位触发器。在时钟(CLK)输入的正跳变时,触发器的Q输出取数据(D)输入的逻辑电平。 OE \可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 工作电压范围为1.65至3.6 V 最大tpd为4.2 ns,3.3 V 24-mA输出驱动在3.3 V 数据输入...

  这个16位透明D型锁存器设计用于1.65 V至3.6 VVCC操作。 SN74ALVCH16373特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。该器件可用作两个8位锁存器或一个16位锁存器。当锁存使能(LE)输入为高电平时,Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常状态逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 为确保上电或断电期间的高阻态,OE \应连接到VCC通过上拉电阻;电阻的最小值由驱动器的电流吸收能力决定。 有源总线保持电路将未使用或未驱动的输入保持在有效的逻辑状态。不建议在上拉电路中使用上拉或下拉电阻。 特性 德州仪器广播公司的成员?系列 工作电压范围为1.65 V至3.6 V 最大tpd3.6 ns,3.3 V ...

  SN54ABT16260和SN74ABTH16260是12位至24位多路复用D型锁存器,用于必须复用两条独立数据路径的应用中,或者从单个数据路径中解复用。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。该器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线B \控制信号还允许A-to-B方向的存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存状态,直到锁存使能输入返回高电平为止。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 ...

  这些18位总线态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现更宽的缓冲寄存器,I /O端口,带奇偶校验的双向总线驱动器和工作寄存器。 ?? ABT162823A器件可用作两个9位触发器或一个18位触发器。当时钟使能(CLKEN)\输入为低电平时,D型触发器在时钟的低到高转换时输入数据。将CLKEN \置为高电平会禁用时钟缓冲器,从而锁存输出。将清零(CLR)\输入设为低电平会使Q输出变为低电平而与时钟无关。 缓冲输出使能(OE)\输入将9个输出置于正常逻辑状态(高电平)或低电平)或高阻抗状态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动器提供了驱动总线线路的能力,无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 输出设计为源电流或吸收电流高达12 mA,包括等效的25- 串联电阻,用于减少过冲和下冲。 这些器件完全符合热插拔规定使用Ioff和上电3状态的应用程序。 Ioff电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置...

  ABTH162260是12位至24位多路复用D型锁存器,用于两个独立数据路径必须复用或复用的应用中。 ,单一数据路径。典型应用包括在微处理器或总线接口应用中复用和/或解复用地址和数据信息。这些器件在存储器交错应用中也很有用。 三个12位I /O端口(A1-A12,1B1-1B12和2B1-2B12)可用于地址和/或数据传输。输出使能(OE1B \,OE2B \和OEA \)输入控制总线B \控制信号还允许A-to-B方向的存储体控制。 可以使用内部存储锁存器存储地址和/或数据信息。锁存使能(LE1B,LE2B,LEA1B和LEA2B)输入用于控制数据存储。当锁存使能输入为高电平时,锁存器是透明的。当锁存使能输入变为低电平时,输入端的数据被锁存并保持锁存状态,直到锁存使能输入返回高电平为止。 B端口输出设计为吸收高达12 mA的电流,包括等效的25系列电阻,以减少过冲和下冲。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过...

  这些20位透明D型锁存器具有同相三态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 ?? ABT162841器件可用作两个10位锁存器或一个20位锁存器。锁存使能(1LE或2LE)输入为高电平时,相应的10位锁存器的Q输出跟随数据(D)输入。当LE变为低电平时,Q输出锁存在D输入设置的电平。 缓冲输出使能(10E或2OE)输入可用于放置输出。相应的10位锁存器处于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。 输出设计为吸收高达12 mA的电流,包括等效的25- 用于减少过冲和下冲的串联电阻。 这些器件完全适用于使用I的热插入应用关闭并启动3状态。 Ioff电路禁用输出,防止在断电时损坏通过器件的电流回流。上电和断电期间,上电三态电路将输出置于高阻态,从而防止驱动器冲突。 为确保上电或断电期间的高阻态, OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 OE \不影响锁存器的内部操作。当输出处于高阻态时,可以保留旧数据...

  ALVTH16821器件是20位总线 VVCC操作,但能够为5 V系统环境提供TTL接口。 这些器件可用作两个10位触发器或一个20位触发器。 20位触发器是边沿触发的D型触发器。在时钟(CLK)的正跳变时,触发器存储在D输入端设置的逻辑电平。 缓冲输出使能(OE \)输入可用于将10个输出置于正常逻辑状态(高电平或低电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和1.2 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保1.2 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 SN54ALVTH16821的特点是可在-55C至125C的整个军用温度范围内工作。 SN74ALVTH16821的工作温度范围为-40&de...

  ALVTH16374器件是16位边沿触发D型触发器,具有3态输出,设计用于2.5V或3.3VV

  CC 操作,但能够为5 V系统环境提供TTL接口。这些器件特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 这些器件可用作两个8位触发器或一个16位翻转器。翻牌。在时钟(CLK)的正跳变时,触发器存储在数据(D)输入处设置的逻辑电平。 缓冲输出使能(OE)输入可用于将8个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE不影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 /p

  当VCC介于0和1.2 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保1.2 V以上的高阻态,OE应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 SN54ALVTH16374的特点是在-55C至125C的整个军用温度...

  这些18位触发器具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现更宽的缓冲寄存器,I /O端口,带奇偶校验的双向总线驱动器和工作寄存器。 ABTH16823可用作两个9位触发器或一个18位触发器。当时钟使能(CLKEN \)输入为低电平时,D型触发器在时钟的低到高转换时输入数据。将CLKEN \置为高电平会禁用时钟缓冲器,锁存输出。将清零(CLR \)输入置为低电平会使Q输出变为低电平,与时钟无关。 缓冲输出使能(OE \)输入可用于将9个输出置于正常逻辑状态(高或低逻辑电平)或高阻态。在高阻抗状态下,输出既不会加载也不会显着驱动总线。高阻抗状态和增加的驱动提供了驱动总线的能力,而无需接口或上拉组件。 OE \不会影响触发器的内部操作。当输出处于高阻态时,可以保留旧数据或输入新数据。 当VCC介于0和2.1 V之间时,器件在上电或断电期间处于高阻态。但是,为了确保2.1 V以上的高阻态,OE \应通过上拉电阻连接到VCC;电阻的最小值由驱动器的电流吸收能力决定。 提供有源总线保持电路,用于保持有效逻辑电平的未使用或浮动数据输入。 ...

  SNxAHCT16373器件是16位透明D型锁存器,具有3态输出,专为驱动高电容或相对低阻抗负载而设计。它们特别适用于实现缓冲寄存器,I /O端口,双向总线驱动器和工作寄存器。 特性 德州仪器Widebus系列的成员 EPIC(增强型高性能注入CMOS)工艺 输入兼容TTL电压 分布式VCC和GND引脚最大限度地提高高速 开关噪声 流通式架构优化PCB布局 每个JESD的闩锁性能超过250 mA 17 ESD保护每个MIL-STD超过2000 V- 883, 方法3015;使用机器型号超过200 V(C = 200 pF,R = 0) 封装选项包括: 塑料收缩小外形(DL)封装

  薄收缩小外形(DGG)封装 薄超小外形(DGV)封装 80-mil精细间距陶瓷扁平(WD)封装 25密耳的中心间距 参数 与其它产品相比D 类锁存器 ...

http://harpoolbrothers.com/shujujicunqi/779.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有